
MATRIX LEXICA: ΑΝ ALTERNAτiVE DESCRIPτiON OF LEXICAL DATABASES 

Ε. Papakitsos, Μ. Gregoriadou 

SUMMARY 

Ιπ the work presented here, new methods for designing and implementing large lexical databas­

es were examined. These lexical databases or machine readable dictionaries are expected to be 

organized in a way to proνide fast access to the stored data and efficient memory management. 

Directed graphs can be used to describe and organize a lexical database of large magnitude in a 

compact manner. These data structures are caJied matrix lexica, where the letters are described as 

nodes of directed graphs and the lemmata as paths (set of edges). lt is claimed that matrix lexica can 

efficiently support automated language applications, in the fields of lexicography, terminology, 

machίne-translation and others, by proνiding high speed of resolution, sound mathematical founda­

tion, Ιονν memory requirements and ability to handle distorted input in future deνetopments. These 

methods were eνaluated for Modern Greek as a target language. 

Ο INTRODUCτiON 

The oνerall target οΙ the work presented here was the development οΙ a general pur· 

pose automated system lor the computatιonal treatment οΙ Modern Greek morphology. 

Such a computerized system is composed οΙ two major subsystems: 

(i) the subsystem which analyze the words. called "'tagger"' and 

(ii) a database. containing inlormation about the words. which is called "'leχicaι data· 

base" or "lexicon". 

11 is eχpected lrom a tagger to provide one accurate analysis for every analysed word 

last and with low compleχity (in order to impove maintainability). The model of functional 

decomposition [1][4] was used to design and implement a tagger for Modern Greek and 

evaluate its perlormance using a large scale corpus (ECI-Greek Part). containing 

approχimately 1,880,000 words. This tagger used a morpheme based leχicon haνing 7800 

entries. The morpheme based lexicon is a lexical database that contains morphemes 

instead of words. The advantages of such a lexicon are: low computer memory require­

ments ability to simulate the natural mechanisms of language. The second advantage (ii) 

gives to the tagger the ability of analyzing noνel words (neologisms) or words that usual· 

ly are not included in other types of traditional dictionaries. The initial size of this leχical 

database includes 7800 entries that are morphemes of the following classes: free mor· 

143 

Kostas
Stamp



phemes (1669), roo1s (5758), inflectional suffiχes (149), suffiχes and prefiχes (approχ. 

200). Α computerized system haνing the aboνe mentioned features requires adνanced 

storing and accessing methods in organizing the leχicon. 

1 LEXICAL DATABASES 

For supporting a tagger, two of the most frequently used data structures (and access­

ing methods) are hash tables [5] and tries or root leχica [3]. The design of the leχical data­

base for our tagger followed the hash-table method. The entries are initially distributed in 

1000 positions where collision occurs for up to 100 cases. Finding a better hashing-func­

tion was not a priority of the deνelopment although better hashing functions are available. 

Twelve data arrangements and searching algorithms were tested (serial, binary, block 

search and hashing upon arrays, lists and binary trees) before concluding to the superi­

ority of hashing, which performs 150% faster than the second candidate method (array's 

binary search). 

On the other hand, hashing wastes memory and maybe it is not the best way to deal 

with spelling errors, the appearance of the errors being significant in the corpus (2%). 

Tries also waste memory and provide a lower oνerall speed, but recent work on Finite 

State Automata (FSA) has demonstrated an ability to deal with most kinds of spelling 

errors [2], in a potentially effective manner. One target of this research was to find a data­

base design which can probably combine the advantages of both hash tables and tries, 

without the corresponding drawbacks. Namely, a data structure and a searching method 

that may provide high resolution speed, minimum occupation of memory and an ability to 

support effectively spelling-checking. lt is belieνed that methods based on directed 

graphs for organizing a leχical database (matriχ leχica) can be very promising towards 

this direction. 

2 MATRIX LEXICA 

Α matriχ leχicon, which is designed as a directed graph, is arranged as a matriχ of 

characters (Fig.1). The number of columns denotes the size of the alphabet and the num­

ber of rows denotes the length of a string (lemma). Eνery letter on a certain position of a 

string is a node and any string represents a unique path in the graph. Α path is a set of 

edges starting from a node of the first row. An edge connects a node of one row only to 

a node of the neχt row from top to bottom, thus the graph is directed. The attributes of a 

lemma (or a pointer to them) can be found at the starting or the finishing node of its asso­

ciated path. 

144 



a b c d e f g h i I k 11 m n r s ι z 

1 -• 
2 ·-

I'"" 

-- ι----3 • 
4 • !"'"" 

.. 

n 
_I 

Figure 1. Α matrix lexicon and the path of the word 'time'. 

Due to collision, a node contains the attributes of many paths, but a path is uniquely 

represented by an integer which is allocated to it through some hashing function. This 

design can provide fast data access equal to a hash table because of the hashing func· 

tion, and it can support a Finite State Automaton (FSA) in discovering a string node by 

node just like a trie. Additionally, it is very compact because the characters of the strings 

are not present (they are substituted by nodes) and the strings can be represented as two 

byte integers. This representation is of fixed size, which is less than half of the average 

size of lemmata (4.5 characters per string). Two relevant designs will be discused, the 

Character Combination Data Engine-CCDE [6] and the Cartesian Lexicon described in the 

neχt section. 

The CCDE is proposed as a new general method of storιng data without any prepera­

tion, i.e. without definning fields. their keys, indexed files, etc. CCDE can be described as 

a directed multιgraph and it can be used to implement a matrix lexicon. lt contains double 

the nodes of the prevιously described matrix, because terminal nodes (where a path fin· 

ishes) are different from non-termina\ nodes. Each path is marked by a degree associated 

with the lenght of it and with the number of common nodes with other paths. Because 

paths share common nodes and edges with other paths, each node contains informa-

tion about the accepted and not accepted second-precedent edges. This happens in order 

to avoid generation of non-exίstent strings if the previous node ίs common with another 

path. The above information consists of the minimum and maximum degree of the accept-

145 



ed edges, and the minimum and maχimum degree of the unaccepted edges. The degree 

numbers are calculated through an equation based on the combination of characters. Ιt is 

claimed that this new method has the ability of remembering the stored characters. 

3 ΤΗΕ CARTESIAN LEXICON 

The "Cartesian Leχicon" can be described as a simple digraph and 11 is a matriχ Ιeχi­

con designed and implemented as part of this research, aiming at the development of Ιeχ­

ical databases capable of supporting word-processing more efficiently. Here, the nodes 

are considered as points of a two dimensional space, where each node is identified by a 

pair of Cartesian coordinates (hence Cartesian Leχicon). Α path is identified by its lenght, 

starting from the [0,0] point which is outside the matriχ of letters (i.e , the 'a' of the first 

row is identified by [1,1] coordinates). Α node can be terminal or not or both. lf it is ter­

minal, the features of all the associated paths ending there, are stored ιn some kind of list 

or array structure initiating there. For eχample, the strings 'time', 'lake' and 'line· have a 

length of 4 characters with the last one being 'e'. Their features will be stored in a list 

located at the 4th row and the 5th column (Fig .1: [4,'e']), since all their paths finish there. 

The features of each path are distinguished by allocating to them an integer characteriz­

ing the path. This integer can be the length of the path or the result of a hashing function, 

also denoting the position within the array where the features are stored. Takιng the 

above eχample ('time','lake','line'), such a hashing function can use all the characters of 

those strings eχcept the last one ('tim', 'lak', 'lin') which is common to all. ln accessing 

the data after receiving aπ input string (eg. 'time'), the list containing its features is imme­

diately located through the string's length (4) and the last character ('e'). Because the fea­

tures of the other strings (eg. Ίake', 'line', etc) will be also located there, the actual pos·ι­

tion is computed by the hashing function. lf the input string is somehow distorted then its 

features will not be found in the searched list and the correcting procedure wιll be 

invoked. For this purpose, a node is also associated with a 24-bit array denoting the 

acceptable edges connecting the nodes of the previous row to the current node. The cor­

recting procedure will trace the path of the input string forwards (eg.'t'-'i'-'m'-'e', as it 

would have happened in a trie) or backwards (eg. 'e'-'m'-'i'-'1') through the nodes, to dis­

cover the error and to find eventually !he correct location of the strιng's features. 

Several configurations of the Cartesian Lexicon were evaluated in preliminary tests, 

differing in few details. Some of its discovered characteristics, using Modern Greek as the 

target language, were that lists may contain from Ο to 250 elements. The centrally locat­

ed ones are the most populated with elements. Α collision rate of up to 10% was 

observed, depending on the hashing function, but the optimizatιon is yet an open subject. 

146 



4 APPLICA110NS 

Except from spelling error correction, which was presented previously, a morpheme 

based lexicon can support the computerized morphological processing system in a νari­

ety of applications. such as automated lexicography and information retrieνal, machine 

translation. handling of newly appearing terms, and others. Α few examples are given 

below: 

Ιn information retrieνal and automated lexicography applications, it is required by the 

compυterized system to find words that haνe a particυlar relation with a giνen one. Thιs is 

the case of deriνatινes and compoυnds. Giνen the word "χρόνος" it is expected from the 

compυterized system to discoνer deriνatiνes like "εκσυγχρονίζω". This is achieνed becaυse 

in the lexicon the roots ("χρον-") are connected through pointers to all their associated pre­

fixes ("εκ-", "συν-", etc.) and to all their assocιated suffixes (like "-ιζω"). Thus their combi­

nations, forming the deriνatiνe words of "χρόνος" like "εκσυγχρονίζω", "αναχρονιστικός", 

"διαχρονικός", etc, are accessible withoυt being explicitly stored in the lexicon. 

ln machine translation applications, eνery morpheme is characterized by a υnique 

nυmber, which is called "key-number". The translation process can be achieνed through 

a mapping of key-nυmbers in a "translation" file as follows: 

[Greek Lexicon: 'ανθρωπ-' =4112] 

["Translation" file: 4112=6087] 

[English Lexicon: 6087='man'-Noun]. 

Machine translation is of course much more compleχ than the above example as it also 

requires a mechanism to simulate the environment, since a word of the source language can 

be mapped to many words of the target langυage depending on the enνironment. 

The last given example is the ability of this comρυterized system to analyse new terms 

such as the words "διαδίκτυο" (internet) or "τηλεμετάδοση" (long-distance transmittion), 

which are not recognized by other systems, υnless they are explicitly stored. The mor­

pheme-based lexicon contains the morphemes "δια-", "δικτυ-", "-ο". "τηλε-", "μετα-", "δοσ­

", "-η", and others. New words are generally made by different combinations of the finite 

nυmber of the existent morphemes of a language. ln that way, the morpheme-based lex­

icon does not haνe to explicitly contain the aboνe new terms in order to analyse them, 

because the tagger is able to discover their constituent morphemes. 

ACKNOWLEDGEMENTS 

Thanks go to As.Prof. Α. Ralli for her contribυtion in the linguistic part of this research 

and to Prof. G. Philokyproυ for his comments and suggestions which improνed the mate­

rial presented here. 

147 



REFERENCES 
(1] Allen J.,Hunnιcutt M.S. and Klatt D. (1987), "From Text to Speech:The MITalk System", 

Cambridge Uniνersity Press. 

[2] Ferro M.V.,Gil J.G.,Aivarino Ρ.Α. (1996), "Finite state morphology and format verlfication", 

Natural Language Engineering 2(4}:303-304, Cambridge University Press. 

[3] Knuth D. (1973), ''τhe Art of Computer Programming", Vol.3: Sorting and Searching, 

Reading, Mass: Addison-Wesley. 

(4] Sproat R.W. (1992), "Morphology and Computation", MIT, USA. 

[5) Tremblay J.,Sorenson Ρ. (1984), "Απ lntroductlon to Data Structures with Applications", 

McGraw-HHI. 

(6] Γελάτος Δ., Ζήβελδης Α. (1992), "Νέος τρόπος αποθήκευσης πληροφοριών σε βάσεις 

δεδομένων", Ενημερωτικό δελτίο ΕΠΥ, Τεύχος 45, Αθήνα. 

Ευάγγελος Παπακίτσος 

Καθηγητής Μ. Ε. 

Δημ. Ράλλη 28, 11144 ΑΘΗΝΑ 

Μαρία Γρηyοpιάδσu 

Επiκοuρη Καθηγήτρια 

Παvεπιστήμω AθJ?vώv, Τμήμα ΠλJ?pοφορικής, 157 71 ΑΘΗΝΑ. 

148 


