EAETO — 2" ZuwiSpio «EAApied FALoos xm Opokoybos
Aiva, 21-23 OxrwBpiou 1990

MATRIX LEXICA: AN ALTERNATIVE DESCRIPTION OF LEXICAL DATABASES

E. Papakitsos, M. Gregoriadou

SUMMARY

In the work presented here, new methods for designing and implementing large lexical databas-
es were examined. These lexical databases or machine readable dictionaries are expected to be
organized in a way to provide fast access to the stored data and efficient memory management.
Directed graphs can be used to describe and organize a lexical database of large magnitude in a
compact manner. These data structures are called matrix lexica, where the letters are described as
nodes of directed graphs and the lemmata as paths (set of edges). It is claimed that matrix lexica can
efficiently support automated language applications, in the fields of iexicography, terminology,
machine-translation and others, by providing high speed of resolution, sound mathematical founda-
tion, low memory requirements and ability to handle distorted input in future developments. These

methods were evaluated for Modern Greek as a target language.

0 INTRODUCTION

The overall target of the work presented here was the development of a general pur-
pose automated system for the computational treatment of Modern Greek morphology.
Such a computerized system is composed of two major subsystems:

(i) the subsystem which analyze the words, called "tagger" and

(i) a database, containing information about the words, which is called "lexical data-

base" or "lexicon’.

It is expected from a tagger to provide one accurate analysis for every analysed word
fast and with low complexity (in order to impove maintainability}. The model of functionat
decomposition [1][4] was used to design and implement a tagger for Modern Greek and
evaluate its performance using a large scale corpus {(ECI-Greek Part), containing
approximately 1,880,000 words. This tagger used a morpheme based lexicon having 7800
entries. The morpheme based lexicon is a lexical database that contains morphemes
instead of words. The advantages of such a lexicon are: low computer memory require-
ments ability to simulate the natural mechanisms of language. The second advantage {ii)
gives to the tagger the ability of analyzing novel words {neologisms) or words that usual-
ly are not included in other types of traditional dictionaries. The initial size of this lexical
database includes 7800 entries that are morphemes of the following classes: free mor-

143

Kostas
Stamp

phemes (1669), roots (5758), inflectional suffixes (149), suffixes and prefixes (approx.
200). A computerized system having the above mentioned features requires advanced
storing and accessing methods in organizing the lexicon.

1 LEXICAL DATABASES

For supporting a tagger, two of the most frequently used data structures (and access-
ing methods) are hash tables [5] and tries or root lexica [3]. The design of the lexical data-
base for our tagger followed the hash-table method. The entries are initially distributed in
1000 positions where collision occurs for up to 100 cases. Finding a better hashing-func-
tion was not a priority of the development although better hashing functions are available.
Twelve data arrangements and searching algorithms were tested (serial, binary, block
search and hashing upon arrays, lists and binary trees) before concluding to the superi-
ority of hashing, which performs 150% faster than the second candidate method (array’s
binary search).

On the other hand, hashing wastes memory and maybe it is not the best way to deal
with speliing errors, the appearance of the errors being significant in the corpus (2%).
Tries also waste memory and provide a lower overall speed, but recent work on Finite
State Automata (FSA)} has demonstrated an ability to deal with most kinds of spelling
errars [2], in a potentially effective manner. One target of this research was to find a data-
base design which can probably combine the advantages of both hash tables and tries,
without the corresponding drawbacks. Namely, a data structure and a searching method
that may provide high resolution speed, minimum occupation of memaory and an ability to
support effectively spelling-checking. It is believed that methods based on directed
graphs for organizing a lexical database {matrix lexica} can be very promising towards
this direction.

2 MATRIX LEXICA

A matrix lexican, which is designed as a directed graph, is arranged as a matrix of
characters (Fig.1). The number of columns denotes the size of the alphabet and the num-
ber of rows denotes the length of a string (lemma). Every letter on a certain position of a
string is a node and any string represents a unique path in the graph. A path is a set of
edges starting from a node of the first row. An edge connects a node of one row only to
a node of the next row from top to bottom, thus the graph is directed. The attributes of a
lemma (or a pointer to them) can be found at the starting or the finishing node of its asso-
ciated path.

144

alb ch e ng h|i JTK’|J'mE . rrs t[rd
L_l_uL | l “"""’{Hr.l
2 .-..J
: . B .
4 T
asERT RS
] i

Figure 1. A mairix lexicon and the path of the word 'time’.

Due to collision, a node contains the attributes of many paths, but a path is uniquely
represented by an integer which is allocated to it through some hashing function. This
design can provide fast data access equal to a hash table because of the hashing func-
tion, and it can support a Finite State Automaton (FSA) in discovering a string node by
node just like a trie. Additionally, it is very compact because the characters of the strings
are not present {they are substituted by nodes} and the strings can be represented as two
byte integers. This representation is of fixed size, which is less than half of the average
size of lemmata (4.5 characters per string). Two relevant designs will be discused, the
Character Combination Data Engine-CCDE [6) and the Cartesian Lexicon described in the
next section.

The CCDE is proposed as a new general method of storing data without any prepera-
tion, i.e. without definning fields, their keys, indexed files, etc. CCDE can be described as
a directed multigraph and it can be used to implement a matrix lexicon. It contains double
the nodes of the previously described matrix, because terminal nodes (where a path fin-
ishes) are different from non-terminal nodes. Each path is marked by a degree associated
with the lenght of it and with the number of common nodes with other paths. Because
paths share common nodes and edges with other paths, each node contains informa-
tion about the accepted and not accepted second-precedent edges. This happens in order
to avoid generation of non-existent strings if the previous node is common with ancther
path. The above information consists of the minimum and maximum degree of the accept-

145

ed edges, and the minimum and maximum degree of the unaccepted edges. The degree
numbers are calculated through an equation based on the combination of characters. It is
claimed that this new method has the ability of remembering the stored characters.

3 THE CARTESIAN LEXICON

The "Cartesian Lexicon" can be described as a simple digraph and it is a matrix lexi-
con desighed and implemented as part of this research, aiming at the development of lex-
ical databases capable of supporting word-processing more efficiently. Here, the nodes
are considered as points of a two dimensional space, where each node is identified by a
pair of Cartesian coordinates {hence Cartesian Lexicon). A path is identified by its lenght,
starting from the [0,0] point which is outside the matrix of letters (i.e , the "a’ of the first
row is identified by [1.1] coordinates}. A node can be terminai or not or both, If it is ter-
minal, the features of all the associated paths ending there, are stored in some kind of list
or array structure initiating there. For example, the strings ‘time’, 'lake’ and 'line’ have a
length of 4 characters with the last one being 'e’. Their features wiil be stored in a list
located at the 4th row and the 5th column (Fig.1: [4,’e’]), since all their paths finish there.
The features of each path are distinguished by alfocating to them an integer characteriz-
ing the path. This integer can be the length of the path or the result of a hashing function,
also denoting the position within the array where the features are stored. Taking the
above example (time'’lake’,'line’), such a hashing function can use all the characters of
those strings except the last one {tim', 'lak’, 'lin") which is common to all. In accessing
the data after receiving an input string (eg. 'time’), the list containing its features is imme-
diately located through the string’s length (4) and the last character ('e’}. Because the fea-
tures of the other strings {eq. 'lake’, 'line’, etc) will be also located there, the actual posi-
tion is computed by the hashing function. If the input string is somehow distorted then its
features will not be found in the searched list and the correcting procedure will be
invoked. For this purpose, a node is also associated with a 24-bit array dencting the
acceptable edges connecting the nodes of the previous row to the current node. The cor-
recting procedure will trace the path of the input string forwards (eg.’t'-'i'-'m'-'e’, as it
would have happened in a trie) or backwards {eg. 'e’-'m’-’i’-'t') through the nodes, to dis-
cover the error and to find eventually the correct location of the siring's features.

Several configurations of the Cartesian Lexicon were evaluated in preliminary tests,
differing in few details. Some of its discovered characteristics, using Modern Greek as the
target language, were that lists may contain from 0 to 250 elements. The centrally iocat-
ed ones are the most populated with elements. A collision rate of up to 10% was
observed, depending on the hashing function, but the optimization is yet an open subject.

146

4 APPLICATIONS

Except from spelling error correction, which was presented previously, a morpheme
based lexicon can support the computerized morphological processing system in a vari-
ety of applications, such as automated lexicography and information retrieval, machine
translation, handling of newly appearing terms, and others. A few examples are given
below:

In information retrieval and automated lexicography applications, it is required by the
computerized system to find words that have a particular relation with a given one. This is
the case of derivatives and compounds. Given the word "xpévog" it is expected from the
computerized system to discover derivatives fike "ekouyypoviw". This is achieved because
in the lexicon the roots ("xpov-"} are connected through pointers to all their associated pre-
fixes ("ek-", "ouv-', etc.) and to all their associated suffixes {like "1Zw"). Thus their combi-
nations, forming the derivative words of "ypdvog" like "exguyxpovife", "avaxpovioTikog",
"“Biaxpovikog”, ete, are accessible without being expiicitly stored in the lexicon.

In machine franslation applications, every morpheme is characterized by a unique
number, which is calied "key-number". The translation process can be achieved through
a mapping of key-numbers in a "translation" file as follows:

[Greek Lexicon: 'avlpwn-' =4112]

["Translation" file: 4112=6087]

[English Lexicon: 6087="man'-Noun].

Machine translation is of course much more complex than the above example as it aiso
requires a mechanism to simulate the environment, since a word of the source language can
be mapped to many words of the target language depending on the environment,

The last given example is the ability of this computerized system to analyse new terms
such as the words "Siadiktuo” (internet) or "mAguetadoon” {long-distance transmittion),
which are not recognized by other systems, uniess they are explicitly stored. The mor-
pheme-based lexicon contains the morphemes "dua-", "dwKktu-', "-0", "tnAe-", "uera-", "doo-
', "n", and others. New words are generally made by different combinations of the finite
number of the existent morphemes of a language. In that way, the morpheme-based lex-
icon does not have to explicitly contain the above new terms in order to analyse them,
because the tagger is able to discover their constituent morphemes.

ACKNOWLEDGEMENTS

Thanks go to As.Prof. A. Ralli for her contribution in the linguistic part of this research
and to Prof. G. Philokyprou for his comments and suggestions which improved the mate-
rial presented here.

147

REFERENCES

[1) Allen J. Hunnicutt M.5. and Kiatt D. (1987), “From Text to Speech:The MiTalk System",
Cambridge University Press.

[2] Ferro M.V, Gil J.G.,Alvarinc P.A. (1996}, "Finite state morphology and formal verification”,
Natural Language Engineering 2(4}:303-304, Cambridge University Prass.

[3] Knuth D. {1973), "The Art of Computer Programming", Vol.3: Sorting and Searching,
Reading, Mass: Addison-Wesley.

[4] Sproat R.W. (1992), "Morphology and Computation”, MIT, USA.

[5] Tremblay J.,Sorenscn P. (1984), "An introduction to Data Structures with Applications”,
McGraw-Hith.

[6] MehdTog A., ZAPeAdng A. {1992), "Néog Tpdnog anoBRkevong minpogoplav oe BACEg
Sedopévuv", EvnuepwTikd deitio EMY, Tedxog 45, Adrva.

EudyyeAog Manakiroog

Kafnyntic M.E.
Anu. PAAAn 28, 111 44 AGHNA

Mapia FpnyomdSau

Enixoupn Kabnyitpla
Raveruoriita ABnvuy, Tudua Mingapopung, 157 71 ADHNA,

148

